LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034										
B.C.A. DEGREE EXAMINATION – COMPUTER APPLICATIONS										
FOURTH SEMESTER – APRIL 2023										
UMT 4405 - MATHEMATICS FOR COMPLICATIONS										
Date: 04-05-2023 Dept. No. Max. : 10	00 Marks									
Time: 09:00 AM - 12:00 NOON										
SECTION A - K1 (CO1)										
Answer ALL the Questions (10	x 1 = 10)									
1. Answer the following										
a) Express $\cos \theta$ in terms of ascending powers of θ .										
b) State Euler's theorem.										
c) When do you say a given matrix is orthogonal?										
d) What do you mean by reciprocal equation?										
e) Define the term interpolation.										
2. Fill in the blanks										
a) The expansion of $\tan 7\theta$ is										
b) Every square matrix satisfies its own										
c) The polynomial function $f(x)$ when divided by $x - a$ yields the remainder as	·									
d) If $z = f(u)$, where u is a function of x and y, then $\frac{\partial z}{\partial x} =$										
e) The Simpson's one-third rule formula is given by										
SECTION A - K2 (CO1)										
Answer ALL the Questions	(10 x 1 =									
3. MCQ a) $2 \sinh x \cosh x =$										
$\begin{array}{c} a \\ a \\ c \\$										
(i) $\sinh 2x$ (ii) $\cosh 2x$ (iii) $\tanh 2x$ (iv) $\operatorname{sech} 2x$										
b) A root of $f(x) = 0$ is said to lie between a and b if										
(i) $f(a), f(b) > 0$ (ii) $f(a), f(b) < 0$ (iii) $f(a) > 0, f(b) < 0$ (iv) $f(a), f(b) = 0$										
c) The eigen values of the matrix $\begin{bmatrix} 8 & -4 \\ 2 & 2 \end{bmatrix}$ are										
(i) 4,3 (ii) 6,4 (iii) 6,3 (iv) 3,3										
d) The first order partial differential coefficients of $u = sin(ax + by)$ with respect to x is										
(i) $a \cos(ax + by)$ (ii) $b \cos(ax + by)$ (iii) $-b \cos(ax + by)$ (iv) $-a \cos(ax + by)$										
e) In Newton Raphson method if the curve $f(x)$ is constant, then										
(i) $f(x) = 0$ (ii) $f'(x) = 0$ (iii) $f(x) = c$ (iv) $f''(x) = 0$										
4. True or False										
a) $\log(x + \sqrt{x^2} + 1) = \sinh^{-1} x.$										
b) If α is a root of a reciprocal equation then $1/\alpha$ is also its root.										

c)	The rank of the matrix $\begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$ is 1.									
d)	The function $x^2 + y$ is a homogeneous function.									
e)	The order of convergence of Newton Raphson method is 2.									
SECTION B - K3 (CO2)										
Answer any TWO of the following $(2 \times 10 = 20)$										
5.	Organize sin	Organize $\frac{\sin 6\theta}{\sin \theta}$ in terms of $\cos \theta$.								
6.	Establish the validity of the relation $p^3 + 8r = 4pq$, if the sum of two roots of the equation									
	$x^4 + px^3 + qx^2 + rx + s = 0$ equals the sum of the other two.									
7.	If $u = \tan^{-1} \frac{x^3 + y^3}{x - y}$, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$.									
8.	Determine the inverse of the matrix $A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix}$ using Cayley Hamilton Theorem.									
SECTION C – K4 (CO3)										
	Answer any TWO of the following (2 x 10 = 20)									
9.	Given that	cos a cosh i	$b = \cos c$ as	nd sin a sin	nh b = sin	<i>c</i> , formulate	the relation			
	$sin c = \pm$	$sin2 a = \pm$	sinh2 b.							
10.	Identify the equation with rational coefficients one of whose roots is $\sqrt{5} + \sqrt{2}$.									
11.	If $V = (x^2 + y^2 + z^2)^{-1/2}$, then determine the value of $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$.									
12.	Estimate the	e first and sec	cond order de	erivatives of	f(x) at $x =$	1.5 if				
	x	1.5	2.0	2.5	3.0	3.5	4.0			
	У	3.375	7.000	13.625	24.000	38.875	59.000			
SECTION D – K5 (CO4)										
Answer any ONE of the following (1 x 20 = 20)										
13.	13. (a) Defend the relation $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2}\left(\frac{\partial z}{\partial \theta}\right)^2$, where $z = f(x, y)$ and $x = r \cos \theta$ and									
	$y = r \sin \theta$.		-				(1	0 marks)		
	(b) Evaluate $\lim_{\theta \to 0} \frac{n \sin \theta - \sin n\theta}{n \sin \theta - \sin n\theta}$.							0 marks)		
14.	Estimate the	e roots of the	equation $6x$	$x^{5} - x^{4} - 43$	$x^3 + 43x^2 +$	-x - 6 = 0.				
			SE	CTION E -	K6 (CO5)					
	Answer any	y ONE of the	e following					(1 x 20	=	
	20)									
15.	Solve $\int_0^{10} \frac{a}{14}$	$\frac{lx}{x^2}$ using (i)	Trapezoidal	rule (ii) Sim	pson's one-th	hird rule.				
16.	Diagonalize the matrix $A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$.									
&&&&&&&										