LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.C.A. DEGREE EXAMINATION - COMPUTER APPLICATIONS

FOURTH SEMESTER - APRIL 2023

UMT 4405 - MATHEMATICS FOR COMPUTER APPLICATIONS

Date: 04-05-2023
Time: 09:00 AM - 12:00 NOON
Max. : 100 Marks

SECTION A - K1 (CO1)

Answer ALL the Questions

1. Answer the following
a) Express $\cos \theta$ in terms of ascending powers of θ.
b) State Euler's theorem.
c) When do you say a given matrix is orthogonal?
d) What do you mean by reciprocal equation?
e) Define the term interpolation.
2. Fill in the blanks
a) The expansion of $\tan 7 \theta$ is
b) Every square matrix satisfies its own
c) The polynomial function $f(x)$ when divided by $x-a$ yields the remainder as \qquad
d) If $z=f(u)$, where u is a function of x and y, then $\frac{\partial z}{\partial x}=$
e) The Simpson's one-third rule formula is given by
\qquad -

SECTION A - K2 (CO1)

Answer ALL the Questions

10)

3. $\mathbf{M C Q}$
a) $2 \sinh x \cosh x=$
(i) $\sinh 2 x$
(ii) $\cosh 2 x$
(iii) $\tanh 2 x$
(iv) $\operatorname{sech} 2 x$
b) A root of $f(x)=0$ is said to lie between a and b if
(i) $f(a), f(b)>0$
(ii) $f(a), f(b)<0$
(iii) $f(a)>0, f(b)<0$
(iv) $f(a), f(b)=0$
c) The eigen values of the matrix $\left[\begin{array}{cc}8 & -4 \\ 2 & 2\end{array}\right]$ are
(i) 4,3
(ii) 6,4
(iii) 6,3
(iv) 3,3
d) The first order partial differential coefficients of $u=\sin (a x+b y)$ with respect to x is
(i) $\cos (a x+b y)$
(ii) $\mathrm{b} \cos (a x+b y)$
(iii) $-\mathrm{b} \cos (a x+b y)$
(iv) $-a \cos (a x+b y)$
e) In Newton Raphson method if the curve $f(x)$ is constant, then
(i) $f(x)=0$
(ii) $f^{\prime}(x)=0$
(iii) $f(x)=c$
(iv) $f^{\prime \prime}(x)=0$
4. True or False
a) $\log \left(x+\sqrt{x^{2}}+1\right)=\sinh ^{-1} x$.
b) If α is a root of a reciprocal equation then $1 / \alpha$ is also its root.
c) \quad The rank of the matrix $\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$ is 1.
d) The function $x^{2}+y$ is a homogeneous function.
e) The order of convergence of Newton Raphson method is 2 .

SECTION B - K3 (CO2)

Answer any TWO of the following
(2 x $10=$
20)
5. Organize $\frac{\sin 6 \theta}{\sin \theta}$ in terms of $\cos \theta$.
6. Establish the validity of the relation $p^{3}+8 r=4 p q$, if the sum of two roots of the equation $x^{4}+p x^{3}+q x^{2}+r x+s=0$ equals the sum of the other two.
7. If $u=\tan ^{-1} \frac{x^{3}+y^{3}}{x-y}$, then show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$.
8. Determine the inverse of the matrix $A=\left[\begin{array}{ccc}2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3\end{array}\right]$ using Cayley Hamilton Theorem.

SECTION C - K4 (CO3)

Answer any TWO of the following

9. Given that $\cos a \cosh b=\cos c$ and $\sin a \sinh b=\sin c$, formulate the relation $\sin c= \pm \sin 2 a= \pm \sinh 2 b$.
10. Identify the equation with rational coefficients one of whose roots is $\sqrt{5}+\sqrt{2}$.
11. If $V=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$, then determine the value of $\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}$.
12. Estimate the first and second order derivatives of $f(x)$ at $x=1.5$ if

x	1.5	2.0	2.5	3.0	3.5	4.0
y	3.375	7.000	13.625	24.000	38.875	59.000

SECTION D - K5 (CO4)

Answer any ONE of the following

13. (a) Defend the relation $\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}=\left(\frac{\partial z}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial z}{\partial \theta}\right)^{2}$, where $z=f(x, y)$ and $x=r \cos \theta$ and
$\mathrm{y}=r \sin \theta$.
(10 marks)
(b) Evaluate $\lim _{\theta \rightarrow 0} \frac{n \sin \theta-\sin n \theta}{\theta(\cos \theta-\sin n \theta)}$.
14. Estimate the roots of the equation $6 x^{5}-x^{4}-43 x^{3}+43 x^{2}+x-6=0$.

SECTION E - K6 (CO5)

Answer any ONE of the following
$(1 \times 20=$
20)
15. Solve $\int_{0}^{10} \frac{d x}{1+x^{2}}$ using (i) Trapezoidal rule (ii) Simpson's one-third rule.
16.

Diagonalize the matrix $A=\left[\begin{array}{ccc}2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$.

